inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tobias Van Almsick and William S. Sheldrick*

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany

Correspondence e-mail: william.sheldrick@rub.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (b–Se) = 0.003 Å H-atom completeness 0% Disorder in main residue R factor = 0.067 wR factor = 0.135 Data-to-parameter ratio = 28.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexacaesium nonaselenidotetraantimonate(III) hemihydrate

The title compound, $Cs_6Sb_4Se_9 \cdot 0.5H_2O$, contains discrete $[Sb_4Se_9]^{6-}$ chain anions consisting of corner-linked SbSe₃ pyramids. Molecular C_2 symmetry is observed for these nonaselenidoantimonate(III) anions, which exhibit bridging Sb—Se distances in the range 2.615 (2)–2.650 (3) Å and shorter terminal Sb—Se distances between 2.507 (3) and 2.522 (3) Å.

Comment

Although electrospray mass spectrometric measurements on the K⁺/Sb/Se system in dimethylformamide (DMF) have confirmed the presence of the corner-bridged oligomeric anions $[Sb_2Se_5]^{4-}$ (Raymond *et al.*, 1997), $[Sb_3Se_7]^{5-}$, $[Sb_6Se_{12}]^{6-}$ and $[Sb_8Se_{15}]^{6-}$, only the first of these selenidoantimonate(III) anions has been characterized in the solid state. Both $[Fe(en)_3]_2Sb_2Se_5$ (en = ethylenediamine) (Chen et al., 2000) and [Mn(en)₃]₂Sb₂Se₅ (Näther et al., 2003) contain discrete [Sb₂Se₅]⁴⁻ anions comprising two corner-bridged SbSe₃ pyramids. The alternative edge-bridging condensation mode has been established for the *cis*- and *trans*- $[Sb_2Se_4]^{2-}$ anions that are present in the crystal structure of Ba₄Sb₄Se₁₁ (Cordier et al., 1980), together with discrete SbSe₃³⁻pyramids and Se_2^{2-} dumb-bells. *cis*-[Sb₂Se₄]²⁻ anions have also been characterized in [K(2,2,2-crypt)]₂Sb₂Se₄ (2,2,2-crypt is 4,7,13,18,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) (Pell & Ibers, 1996). In contrast, [K(2,2,2-crypt)]₂Sb₂Se₆ (Smith *et al.*, 1997) contains cyclic $[Sb_2Se_6]^{2-}$ anions in which the component SbSe₃ pyramids are connected through two Se-Se bonds into a six-membered Sb₂Se₄ ring. To our knowledge, only one larger discrete selenidoantimonate(III) has previously been structurally characterized, namely the remarkable $[Sb_{12}Se_{20}]^{4-}$ anion in $(Ph_4P)_4Sb_{12}Se_{20}$ (Martin et al., 1994).

We now report the preparation and structure of $Cs_6Sb_4Se_9.0.5H_2O$, which contains the novel discrete $[Sb_4Se_9]^{6-}$ chain anion (Fig. 1) not found by Raymond *et al.*

C 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 11 October 2005 Accepted 19 October 2005 Online 27 October 2005

Figure 1

The chain-like $[Sb_4Se_3]^{6-}$ anions of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (A) -x, y, $\frac{3}{2} - z$.]

(1997) for the K⁺/Sb/Se system. Three caesium selenidoantimonates, CsSbSe₂ (Kanishcheva et al., 1980), CsSb₂Se₄ (Sheldrick & Kaub, 1986) and Cs₃Sb₅Se₉ (Sheldrick & Häusler, 1988) had been structurally characterized prior to this study. The last of these phases contains lamellar [Sb₅Se₉]³⁻ anions and was prepared under methanolothermal conditions at 453 K (Sheldrick & Wachhold, 1997) from Cs₂CO₃ and Sb₂Se₃ at a very low molar ratio of 1:5.78. A similar temperature (463 K), but a much higher ratio of 2:1, was employed in the present work, leading to the isolation of discrete $[Sb_{4}Se_{3}]^{6-}$ anions with a lower condensation grade c (Sheldrick & Wachhold, 1998) of 0.444 (c = y/z for anions $[M_{\nu}E_{z}]^{m-}$) in comparison with the value of 0.555 for Cs₃Sb₅Se₉. The central bridging atom Se2 lies on a crystallographic 2 axis, and bond distances and angles within the corner-bridged SbSe₃ pyramids of the discrete chain anions (Table 1) are typical for tricoordinated Sb^{III} atoms (Sheldrick & Wachhold, 1998). Inspection of Fig. 1 suggests that intermolecular Sb1A...Se5 interactions [symmetry code: (A) -x, $y, \frac{3}{2} - z$] should be stereochemically favourable, leading to the adoption of a pseudo-trigonal-bipyramidal coordination by the Sb1 atoms. Such hypervalent bonding is typical for selenidoantimonates(III) and is observed, for instance, in the larger discrete $[Sb_{12}Se_{20}]^{4-}$ anions of $(Ph_4P)_4Sb_{12}Se_{20}$ (Martin et al., 1994). However, the long Sb1A···Se4 distance of 3.635 (3) Å clearly rules out any significant contribution in $[Sb_4Se_9]^{6-}$.

The cations Cs1–Cs4 are sited in channels between stacks of the $[Sb_4Se_9]^{6-}$ anions (Fig. 2) and contain, respectively, eight, six, eight and six Se atoms in their coordination spheres (Table 1). A disordered water O atom was refined with a site occupation factor of 0.5 at the special position ($\frac{1}{2}$, 0, 0) and can participate in the coordination spheres of Cs2 and/or Cs3. It may be assumed that the methanol solvent, which was not dried prior to use, provided the source of the disordered water.

Experimental

 Sb_2Se_3 (480.0 mg, 1.0 mmol) and Cs_2CO_3 (651.6 mg, 2.0 mmol) were heated in a sealed glass tube to 463 K in a CH₃OH/ethylenediamine mixture (4:1 ν/ν , 0.5 ml). After 2 d, the contents were cooled to room

temperature to afford red crystals of $Cs_6Sb_4Se_9 \cdot 0.5H_2O$ in 24% yield. EDX measurements (LEO 1530 Gemini) were in accordance with the expected elemental ratios.

Crystal data

 $Cs_{6}Sb_{4}Se_{9} \cdot 0.5H_{2}O$ $M_{r} = 2004.11$ Monoclinic, C2/c a = 10.409 (2) Å b = 19.064 (4) Å c = 14.895 (3) Å $\beta = 94.39$ (3)° V = 2947.1 (10) Å³ Z = 4

Data collection

Siemens P4 four-circle diffractometer ω scans Absorption correction: ψ scan (XPREP in SHELXTL-Plus; Sheldrick, 1995) $T_{min} = 0.065, T_{max} = 0.108$ 2733 measured reflections 2563 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.135$ S = 1.182563 reflections 89 parameters Cell parameters from 17 reflections $\theta = 5.0-13.1^{\circ}$ $\mu = 22.04 \text{ mm}^{-1}$ T = 293 (2) K Block, red $0.14 \times 0.11 \times 0.10 \text{ mm}$

 $D_x = 4.537 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

1796 reflections with $I > 2\sigma(I)$ $R_{int} = 0.072$ $\theta_{max} = 25.0^{\circ}$ $h = 0 \rightarrow 12$ $k = 0 \rightarrow 22$ $l = -17 \rightarrow 17$ 3 standard reflections every 97 reflections intensity decay: 15%

H atoms not located $w = 1/[\sigma^2(F_o^2) + (0.0473P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.54 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -1.72 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cs1-Se5	3.535 (3)	Cs3-Se4	3.677 (3)
Cs1-Se4	3.633 (3)	Cs3–Se5 ^{xi}	3.827 (3)
Cs1-Se1 ⁱ	3.664 (3)	Cs3-Se1 ^x	3.850 (3)
Cs1-Se3 ⁱ	3.665 (3)	Cs3-Se2	3.855 (3)
Cs1-Se2	3.7807 (19)	Cs3-Se1	4.078 (3)
Cs1-Se4 ⁱⁱ	3.791 (3)	Cs3-Se3 ⁱ	4.307 (3)
Cs1-Se3 ⁱⁱⁱ	3.834 (3)	Cs4-Se5	3.622 (3)
Cs1-Se1 ⁱⁱⁱ	4.055 (3)	Cs4-Se5 ⁱⁱⁱ	3.622 (3)
Cs2-Se5 ⁱⁱ	3.614 (3)	Cs4-Se1 ^{vi}	3.886 (2)
Cs2-Se5	3.614 (3)	Cs4-Se1 ^{xii}	3.886 (2)
Cs2-Se4 ⁱⁱ	3.740 (3)	Cs4-Se3 ^{vi}	3.905 (3)
Cs2-Se4	3.740 (3)	Cs4-Se3 ^{xii}	3.905 (3)
Cs2-O ^{iv}	3.7536 (8)	Sb1-Se4	2.507 (3)
Cs2-O ^v	3.7536 (8)	Sb1-Se2	2.615 (2)
Cs2-Se3 ^{vi}	3.769 (3)	Sb1-Se1	2.626 (3)
Cs2-Se3 ^{vii}	3.769 (3)	Sb2-Se5 ⁱⁱⁱ	2.517 (3)
Cs3-O ^{viii}	3,5846 (17)	Sb2-Se3	2,522 (3)
Cs3-Se3 ^{ix}	3.670 (3)	Sb2-Se1	2.650 (3)
Cs3–Se4 ^x	3.676 (3)		
Se4-Sb1-Se2	98.62 (9)	Se5 ⁱⁱⁱ -Sb2-Se1	100.45 (9)
Se4-Sb1-Se1	96.84 (9)	Se3-Sb2-Se1	94.16 (9)
Se2-Sb1-Se1	95.76 (7)	Sb1-Se1-Sb2	97.67 (8)
Se5 ⁱⁱⁱ -Sb2-Se3	110.46 (10)	Sb1-Se2-Sb1 ⁱⁱⁱ	94.14 (11)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x + 1, y, -z + \frac{3}{2}$; (iii) $-x, y, -z + \frac{3}{2}$; (iv) $-x + 1, y, -z + \frac{1}{2}$; (v) x, y, z + 1; (vi) -x, -y, -z + 1; (vii) $x + 1, -y, z + \frac{1}{2}$; (viii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (ix) $-x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (x) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (xi) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (xi) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (xi) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (xi) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (xi) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (xi) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (xi) $-x + \frac{1}{2}, -z + \frac{1}{2}$; (xii) $-x + \frac{1}{2}, -z + \frac{1}{2}, -z + 1$; (xi) $-x + \frac{1}{2}, -z + \frac{1}{2}, -z + \frac{1}{2}$; (xii) $-x + \frac{1}{2}, -z + \frac{1}{2}, -z + \frac{1}{2}$; (xii) $-x + \frac{1}{2}, -z + \frac{1}{2}, -z + \frac{1}{2}$; (xii) $-x + \frac{1}{2}, -z + \frac{1}{2}, -z + \frac{1}{2}$; (xii) $-x + \frac{1}{2}, -z + \frac{1}{2}, -z + \frac{1}{2}$; (xii) $-x + \frac{1}{2}, -z + \frac{1}{2}, -z + \frac{1}{2}$; (xii) $-x + \frac{1}{2}, -z + \frac{1}{2}, -z + \frac{1}{2}$; (xii) $-x + \frac{1}{2}, -z + \frac{1}{2}, -z + \frac{1}{2}, -z + \frac{1}{2}$; (xii) $-x + \frac{1}{2}, -z + \frac{1}{2}, -z + \frac{1}{2}, -z + \frac{1}{2}$; (xii) $-x + \frac{1}{2}, -z + \frac{1}{2}, -z + \frac{1}{2}, -z + \frac{1}{2}$; (xii) $-x + \frac{1}{2}, -z + \frac{1}{2}$; (xii) $-x + \frac{1}{2}, -z + \frac{1}{2}, -$

Minimum values of 0.067 and 0.135 were obtained for R and $wR(F^2)$, respectively, on varying the site occupation factor for the disordered water O atom in 0.01 steps in the range 0.5–0.8. The site occupation was, subsequently, set at 0.5 for the final refinement cycles. The H atoms were not located. The highest peak in the final differ-

Figure 2

Projection of the structure of (I) perpendicular to the *ab* plane. Atom colour codes: Cs red crossed sphere, Se brown dotted sphere, Sb blue hatched sphere, and O purple open sphere

ence Fourier synthesis is located 1.18 Å from Se3 and the deepest hole is 1.72 Å from Cs1.

Data collection: R3m/V User's Guide (Siemens, 1989); cell refinement: R3m/V User's Guide; data reduction: XDISK (Siemens, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1995); software used to prepare material for publication: *SHELXL97*.

References

Chen, Z., Wang, R. J., Huang, X. Y. & Li, J. (2000). Acta Cryst. C56, 1100–1103. Cordier, G., Cook, R. & Schäfer, H. (1980). Rev. Chim. Mineral. 17, 1–6.

- Kanishcheva, A. S., Mikhailov, Y. N., Lazarev, V. B. & Moshchalkova, N. A. (1980). Dokl. Akad. Nauk SSSR, 252, 872–875. (In Russian.)
- Martin, T. M., Wood, P. T. & Kolis, J. W. (1994). *Inorg. Chem.* **33**, 1587–1588. Näther, C., Wendland, F. & Bensch, W. (2003). *Acta Cryst.* E**59**, m119–m121.
- Poll M A & Iborg I A (1006) Inong Cham 25 4550 4562
- Pell, M. A. & Ibers, J. A. (1996). Inorg. Chem. 35, 4559–4562.
- Raymond, C. C., Dick, D. L. & Dorhout, P. K. (1997). Inorg. Chem. 36, 2678– 2681.
- Sheldrick, G. M. (1995). SHELXTL-Plus. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, W. S. & Häusler, H.-J. (1988). Z. Anorg. Allg. Chem. 561, 149-156.
- Sheldrick, W. S. & Kaub, J. (1986). Z. Anorg. Allg. Chem. 536, 114-118.
- Sheldrick, W. S. & Wachhold, M. (1997). Angew. Chem. Int. Ed. Engl. 36, 206–224.
- Sheldrick, W. S. & Wachhold, M. (1998). Coord. Chem. Rev. 176, 211-322.
- Siemens (1989). R3m/V User's Guide. Version 3.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Smith, D. M., Park, C. W. & Ibers, J. A. (1997). Inorg. Chem. 36, 3798-3800.