Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Tobias Van Almsick and William S. Sheldrick*

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany

Correspondence e-mail:
william.sheldrick@rub.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{b}-\mathrm{Se})=0.003 \AA$
H -atom completeness 0%
Disorder in main residue
R factor $=0.067$
$w R$ factor $=0.135$
Data-to-parameter ratio $=28.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexacaesium nonaselenidotetraantimonate(III) hemihydrate

The title compound, $\mathrm{Cs}_{6} \mathrm{Sb}_{4} \mathrm{Se}_{9} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, contains discrete $\left[\mathrm{Sb}_{4} \mathrm{Se}_{9}\right]^{6-}$ chain anions consisting of corner-linked SbSe_{3} pyramids. Molecular C_{2} symmetry is observed for these nonaselenidoantimonate(III) anions, which exhibit bridging $\mathrm{Sb}-\mathrm{Se}$ distances in the range 2.615 (2)-2.650 (3) \AA and shorter terminal $\mathrm{Sb}-\mathrm{Se}$ distances between 2.507 (3) and 2.522 (3) A.

Comment

Although electrospray mass spectrometric measurements on the $\mathrm{K}^{+} / \mathrm{Sb} / \mathrm{Se}$ system in dimethylformamide (DMF) have confirmed the presence of the corner-bridged oligomeric anions $\left[\mathrm{Sb}_{2} \mathrm{Se}_{5}\right]^{4-}$ (Raymond et al., 1997), $\left[\mathrm{Sb}_{3} \mathrm{Se}_{7}\right]^{5-}$, $\left[\mathrm{Sb}_{6} \mathrm{Se}_{12}\right]^{6-}$ and $\left[\mathrm{Sb}_{8} \mathrm{Se}_{15}\right]^{6-}$, only the first of these selenidoantimonate(III) anions has been characterized in the solid state. Both $\left[\mathrm{Fe}(\mathrm{en})_{3}\right]_{2} \mathrm{Sb}_{2} \mathrm{Se}_{5}(\mathrm{en}=$ ethylenediamine) (Chen et al., 2000) and $\left[\mathrm{Mn}(\mathrm{en})_{3}\right]_{2} \mathrm{Sb}_{2} \mathrm{Se}_{5}$ (Näther et al., 2003) contain discrete $\left[\mathrm{Sb}_{2} \mathrm{Se}_{5}\right]^{4-}$ anions comprising two corner-bridged SbSe_{3} pyramids. The alternative edge-bridging condensation mode has been established for the cis- and trans- $\left[\mathrm{Sb}_{2} \mathrm{Se}_{4}\right]^{2-}$ anions that are present in the crystal structure of $\mathrm{Ba}_{4} \mathrm{Sb}_{4} \mathrm{Se}_{11}$ (Cordier et al., 1980), together with discrete $\mathrm{SbSe}_{3}{ }^{3-}$ pyramids and $\mathrm{Se}_{2}{ }^{2-}$ dumb-bells. cis- $\left[\mathrm{Sb}_{2} \mathrm{Se}_{4}\right]^{2-}$ anions have also been characterized in $[\mathrm{K}(2,2,2 \text {-crypt })]_{2} \mathrm{Sb}_{2} \mathrm{Se}_{4}$ (2,2,2-crypt is 4,7,13,18,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) (Pell \& Ibers, 1996). In contrast, $[\mathrm{K}(2,2,2 \text {-crypt })]_{2} \mathrm{Sb}_{2} \mathrm{Se}_{6}$ (Smith et al., 1997) contains cyclic $\left[\mathrm{Sb}_{2} \mathrm{Se}_{6}\right]^{2-}$ anions in which the component SbSe_{3} pyramids are connected through two $\mathrm{Se}-\mathrm{Se}$ bonds into a six-membered $\mathrm{Sb}_{2} \mathrm{Se}_{4}$ ring. To our knowledge, only one larger discrete selenidoantimonate(III) has previously been structurally characterized, namely the remarkable $\left[\mathrm{Sb}_{12} \mathrm{Se}_{20}\right]^{4-}$ anion in $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{4} \mathrm{Sb}_{12} \mathrm{Se}_{20}$ (Martin et al., 1994).

Received 11 October 2005 Accepted 19 October 2005 Online 27 October 2005

(I)

We now report the preparation and structure of $\mathrm{Cs}_{6} \mathrm{Sb}_{4} \mathrm{Se}_{9} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, which contains the novel discrete $\left[\mathrm{Sb}_{4} \mathrm{Se}_{9}\right]^{6-}$ chain anion (Fig. 1) not found by Raymond et al.

Figure 1
The chain-like $\left[\mathrm{Sb}_{4} \mathrm{Se}_{9}\right]^{6-}$ anions of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: $(A)-x, y, \frac{3}{2}-z$.]
(1997) for the $\mathrm{K}^{+} / \mathrm{Sb} / \mathrm{Se}$ system. Three caesium selenidoantimonates, CsSbSe_{2} (Kanishcheva et al., 1980), $\mathrm{CsSb}_{2} \mathrm{Se}_{4}$ (Sheldrick \& Kaub, 1986) and $\mathrm{Cs}_{3} \mathrm{Sb}_{5} \mathrm{Se}_{9}$ (Sheldrick \& Häusler, 1988) had been structurally characterized prior to this study. The last of these phases contains lamellar $\left[\mathrm{Sb}_{5} \mathrm{Se}_{9}\right]^{3-}$ anions and was prepared under methanolothermal conditions at 453 K (Sheldrick \& Wachhold, 1997) from $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and $\mathrm{Sb}_{2} \mathrm{Se}_{3}$ at a very low molar ratio of 1:5.78. A similar temperature (463 K), but a much higher ratio of $2: 1$, was employed in the present work, leading to the isolation of discrete $\left[\mathrm{Sb}_{4} \mathrm{Se}_{9}\right]^{6-}$ anions with a lower condensation grade c (Sheldrick \& Wachhold, 1998) of $0.444(c=y / z$ for anions $\left[M_{y} E_{z}\right]^{m-}$) in comparison with the value of 0.555 for $\mathrm{Cs}_{3} \mathrm{Sb}_{5} \mathrm{Se}_{9}$. The central bridging atom Se 2 lies on a crystallographic 2 axis, and bond distances and angles within the corner-bridged SbSe_{3} pyramids of the discrete chain anions (Table 1) are typical for tricoordinated $\mathrm{Sb}^{\mathrm{III}}$ atoms (Sheldrick \& Wachhold, 1998). Inspection of Fig. 1 suggests that intermolecular $\mathrm{Sb} 1 A \cdots \operatorname{Se} 5$ interactions [symmetry code: $(A)-x$, $\left.y, \frac{3}{2}-z\right]$ should be stereochemically favourable, leading to the adoption of a pseudo-trigonal-bipyramidal coordination by the Sb 1 atoms. Such hypervalent bonding is typical for selenidoantimonates(III) and is observed, for instance, in the larger discrete $\left[\mathrm{Sb}_{12} \mathrm{Se}_{20}\right]^{4-}$ anions of $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{4} \mathrm{Sb}_{12} \mathrm{Se}_{20}$ (Martin et al., 1994). However, the long $\mathrm{Sb} 1 A \cdots \mathrm{Se} 4$ distance of 3.635 (3) A clearly rules out any significant contribution in $\left[\mathrm{Sb}_{4} \mathrm{Se}_{9}\right]^{6-}$.

The cations Cs1-Cs4 are sited in channels between stacks of the $\left[\mathrm{Sb}_{4} \mathrm{Se}_{9}\right]^{6-}$ anions (Fig. 2) and contain, respectively, eight, six, eight and six Se atoms in their coordination spheres (Table 1). A disordered water O atom was refined with a site occupation factor of 0.5 at the special position $\left(\frac{1}{2}, 0,0\right)$ and can participate in the coordination spheres of Cs2 and/or Cs3. It may be assumed that the methanol solvent, which was not dried prior to use, provided the source of the disordered water.

Experimental

$\mathrm{Sb}_{2} \mathrm{Se}_{3}(480.0 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(651.6 \mathrm{mg}, 2.0 \mathrm{mmol})$ were heated in a sealed glass tube to 463 K in a $\mathrm{CH}_{3} \mathrm{OH}$ /ethylenediamine mixture ($4: 1 \mathrm{v} / \mathrm{v}, 0.5 \mathrm{ml}$). After 2 d , the contents were cooled to room
temperature to afford red crystals of $\mathrm{Cs}_{6} \mathrm{Sb}_{4} \mathrm{Se}_{9} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ in 24% yield. EDX measurements (LEO 1530 Gemini) were in accordance with the expected elemental ratios.

Crystal data

$\mathrm{Cs}_{6} \mathrm{Sb}_{4} \mathrm{Se}_{9} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=2004.11$
Monoclinic, $C 2 / c$
$a=10.409$ (2) A
$b=19.064$ (4) \AA
$c=14.895$ (3) \AA
$\beta=94.39$ (3) ${ }^{\circ}$
$V=2947.1(10) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=4.537 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 17 \\
& \quad \text { reflections } \\
& \theta=5.0-13.1^{\circ} \\
& \mu=22.04 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, red } \\
& 0.14 \times 0.11 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection
Siemens P4 four-circle
1796 reflections with $I>2 \sigma(I)$
diffractometer
ω scans
Absorption correction: ψ scan
(XPREP in SHELXTL-Plus;
Sheldrick, 1995)
$T_{\text {min }}=0.065, T_{\text {max }}=0.108$
2733 measured reflections
2563 independent reflections
$R_{\text {int }}=0.072$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 22$
$l=-17 \rightarrow 17$
3 standard reflections every 97 reflections intensity decay: 15%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \mathrm{H} \text { atoms not located } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0473 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.54 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.72 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$w R\left(F^{2}\right)=0.135$
$S=1.18$
2563 reflections
89 parameters

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Cs1-Se5	3.535 (3)	Cs3-Se4	3.677 (3)
Cs1-Se4	3.633 (3)	$\mathrm{Cs} 3-\mathrm{Se} 5^{\mathrm{xi}}$	3.827 (3)
Cs1-Se1 ${ }^{\text {i }}$	3.664 (3)	Cs3-Se1 ${ }^{\text {x }}$	3.850 (3)
$\mathrm{Cs} 1-\mathrm{Se} 3{ }^{\text {i }}$	3.665 (3)	Cs3-Se2	3.855 (3)
Cs1-Se2	3.7807 (19)	Cs3-Se1	4.078 (3)
$\mathrm{Cs} 1-\mathrm{Se} 4{ }^{\text {ii }}$	3.791 (3)	Cs3-Se3 ${ }^{\text {i }}$	4.307 (3)
$\mathrm{Cs} 1-\mathrm{Se} 3{ }^{\text {iii }}$	3.834 (3)	Cs4-Se5	3.622 (3)
$\mathrm{Cs} 1-\mathrm{Se} 1^{\text {iii }}$	4.055 (3)	Cs4-Se5 $5^{\text {iii }}$	3.622 (3)
$\mathrm{Cs} 2-\mathrm{Se} 5{ }^{\text {ii }}$	3.614 (3)	Cs4-Se1 ${ }^{\text {vi }}$	3.886 (2)
Cs2-Se5	3.614 (3)	Cs4-Se1 ${ }^{\text {xii }}$	3.886 (2)
Cs2-Se4 ${ }^{\text {ii }}$	3.740 (3)	Cs4-Se3 ${ }^{\text {vi }}$	3.905 (3)
Cs2-Se4	3.740 (3)	Cs4-Se3 ${ }^{\text {xii }}$	3.905 (3)
Cs2-O ${ }^{\text {iv }}$	3.7536 (8)	Sb1-Se4	2.507 (3)
$\mathrm{Cs} 2-\mathrm{O}^{\text {v }}$	3.7536 (8)	Sb1-Se2	2.615 (2)
$\mathrm{Cs} 2-\mathrm{Se} 3{ }^{\text {vi }}$	3.769 (3)	Sb1-Se1	2.626 (3)
$\mathrm{Cs} 2-\mathrm{Se} 3^{\text {vii }}$	3.769 (3)	$\mathrm{Sb} 2-\mathrm{Se} 5{ }^{\text {iii }}$	2.517 (3)
Cs3-O ${ }^{\text {viii }}$	3.5846 (17)	Sb2-Se3	2.522 (3)
$\mathrm{Cs} 3-\mathrm{Se} 3{ }^{\text {ix }}$	3.670 (3)	Sb2-Se1	2.650 (3)
Cs3-Se4 ${ }^{\text {x }}$	3.676 (3)		
Se4-Sb1-Se2	98.62 (9)	Se5 $5^{\text {iii }}-\mathrm{Sb} 2-\mathrm{Se} 1$	100.45 (9)
Se4-Sb1-Se1	96.84 (9)	Se3-Sb2-Se1	94.16 (9)
Se2-Sb1-Se1	95.76 (7)	$\mathrm{Sb} 1-\mathrm{Se} 1-\mathrm{Sb} 2$	97.67 (8)
Se5 $5^{\text {iii }}-\mathrm{Sb} 2-\mathrm{Se} 3$	110.46 (10)	$\mathrm{Sb} 1-\mathrm{Se} 2-\mathrm{Sb} 1^{\text {iii }}$	94.14 (11)
$\begin{aligned} & \text { Symmetry codes: (i) } x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2} ; \text { (ii) }-x+1, y,-z+\frac{3}{2} ; \text { (iii) }-x, y,-z+\frac{3}{2} \text {; (iv) } \\ & -x+1, y,-z+\frac{1}{2} ;(\mathrm{v}) \quad x, y, z+1 ;\left(\text { (vi) }-x,-y,-z+1 ; \quad \text { (vii) } x+1,-y, z+\frac{1}{2} ;\right. \text { (viii) } \\ & -x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2} ;\left(\text { (ix) }-x-\frac{1}{2},-y+\frac{1}{2},-z+1 ; \text { (x) }-x+\frac{1}{2},-y+\frac{1}{2},-z+1 ;\right. \text { (xi) } \\ & -x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2} ; \text { (xii) } x,-y, z+\frac{1}{2} . \end{aligned}$			

Minimum values of 0.067 and 0.135 were obtained for R and $w R\left(F^{2}\right)$, respectively, on varying the site occupation factor for the disordered water O atom in 0.01 steps in the range $0.5-0.8$. The site occupation was, subsequently, set at 0.5 for the final refinement cycles. The H atoms were not located. The highest peak in the final differ-

Figure 2
Projection of the structure of (I) perpendicular to the $a b$ plane. Atom colour codes: Cs red crossed sphere, Se brown dotted sphere, Sb blue hatched sphere, and O purple open sphere
ence Fourier synthesis is located $1.18 \AA$ from Se 3 and the deepest hole is $1.72 \AA$ from Cs1.

Data collection: R3m/V User's Guide (Siemens, 1989); cell refinement: R3m/V User's Guide; data reduction: XDISK (Siemens, 1989);
program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1995); software used to prepare material for publication: SHELXL97.

References

Chen, Z., Wang, R. J., Huang, X. Y. \& Li, J. (2000). Acta Cryst. C56, 1100-1103. Cordier, G., Cook, R. \& Schäfer, H. (1980). Rev. Chim. Mineral. 17, 1-6.
Kanishcheva, A. S., Mikhailov, Y. N., Lazarev, V. B. \& Moshchalkova, N. A. (1980). Dokl. Akad. Nauk SSSR, 252, 872-875. (In Russian.)

Martin, T. M., Wood, P. T. \& Kolis, J. W. (1994). Inorg. Chem. 33, 1587-1588.
Näther, C., Wendland, F. \& Bensch, W. (2003). Acta Cryst. E59, m119-m121.
Pell, M. A. \& Ibers, J. A. (1996). Inorg. Chem. 35, 4559-4562.
Raymond, C. C., Dick, D. L. \& Dorhout, P. K. (1997). Inorg. Chem. 36, 26782681.

Sheldrick, G. M. (1995). SHELXTL-Plus. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, W. S. \& Häusler, H.-J. (1988). Z. Anorg. Allg. Chem. 561, 149-156. Sheldrick, W. S. \& Kaub, J. (1986). Z. Anorg. Allg. Chem. 536, 114-118.
Sheldrick, W. S. \& Wachhold, M. (1997). Angew. Chem. Int. Ed. Engl. 36, 206224.

Sheldrick, W. S. \& Wachhold, M. (1998). Coord. Chem. Rev. 176, 211-322.
Siemens (1989). R3m/V User's Guide. Version 3.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Smith, D. M., Park, C. W. \& Ibers, J. A. (1997). Inorg. Chem. 36, 3798-3800.

